Scale Invariant Infinitely Divisible Cascades
نویسندگان
چکیده
Multiplicative processes and multifractals proved useful in various applications ranging from hydrodynamic turbulence to computer network traffic. It was recently shown and explained how and why multifractal analysis could be fruitfully placed in the general framework of infinitely divisible cascades. The aim of this contribution is to design processes, called Infinitely Divisible Cascading (IDC) noise, motion, and random walk. These processes possess at the same time stationary increments as well as multifractal and more general infinitely divisible scaling that can be prescribed a priori over a continuous range of scales. This communication focuses on the specific scale invariant case. To illustrate the powerfulness of the method, we mention that IDC processes can exactly mimic the scaling behaviors predicted by the celebrated She-Lévêque model of turbulence. MATLAB routines implementing those processes are available from our Web pages.
منابع مشابه
Modeling of Infinite Divisible Distributions Using Invariant and Equivariant Functions
Basu’s theorem is one of the most elegant results of classical statistics. Succinctly put, the theorem says: if T is a complete sufficient statistic for a family of probability measures, and V is an ancillary statistic, then T and V are independent. A very novel application of Basu’s theorem appears recently in proving the infinite divisibility of certain statistics. In addition ...
متن کاملInfinitely divisible cascades
Multiplicative processes and multifractals proved useful in various applications ranging from hydrodynamic turbulence to computer network traffic, to name but two. It was recently shown and explained how and why multifractal analysis could be interestingly and fruitfully placed in the more general framework of infinitely divisible cascades. The aim of this contribution is to design processes, c...
متن کاملCompound Poisson Cascades
Multiplicative processes and multifractals proved useful in various applications ranging from hydrodynamic turbulence to computer network traffic. Placing multifractal analysis in the more general framework of infinitely divisible laws, we design processes which possess at the same time stationary increments as well as multifractal and more general infinitely divisible scaling over a continuous...
متن کاملInfinitely Divisible Shot-Noise: Cascades of Non-Compact Pulses
Recently, the concept of infinitely divisible scaling has attracted much interest. As models of this scaling behavior, Poisson products of Cylindrical Pulses and more general infinitely divisible cascades have been proposed. This paper develops path and scaling properties of Poisson products of arbitrary pulses with non-compact support such as multiplicative and exponential shot-noise processes...
متن کاملOn Exact Scaling Log-infinitely Divisible Cascades
In this paper we extend some classical results valid for canonical multiplicative cascades to exact scaling log-infinitely divisible cascades. We complete previous results on non-degeneracy and moments of positive orders obtained by Barral and Mandelbrot, and Bacry and Muzy: we provide a necessary and sufficient condition for the non-degeneracy of the limit measures of these cascades, as well a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004